

Course Hand Out

Subject Name: Operating Systems

Prepared by: G. Radha Devi, Assistant Professor, CSE

Year, Semester, Regulation: II Year- II Sem (R18)

UNIT-1

What is an Operating System?

A program that acts as an intermediary between a user of a computer and the computer hardware

Operating system goals:

 Execute user programs and make solving user problems easier

 Make the computer system convenient to use

 Use the computer hardware in an efficient manner

Computer System Structure

Computer system can be divided into four components

 Hardware – provides basic computing resources

CPU, memory, I/O devices

Operating system

Controls and coordinates use of hardware among various applications and users

 Application programs – define the ways in which the system resources are used to solve

the computing problems of the users

Word processors, compilers, web browsers, database systems, video games

 Users

People, machines, other computers

SAMSKRUTI COLLEGE OF ENGINEERING & TECHNOLOGY

(Approved by AICTE, New Delhi & Affiliated to JNTUH.)

Kondapur (V), Ghatkesar (M), Medchal (Dist)

Four Components of a Computer System

Operating System Definition

 OS is a resource allocator

 Manages all resources

 Decides between conflicting requests for efficient and fair resource use

 OS is a control program

 Controls execution of programs to prevent errors and improper use of the computer

 No universally accepted definition

 Everything a vendor ships when you order an operating system” is good approximation

 but varies wildly.

 “The one program running at all times on the computer” is the kernel. Everything else is

either a system program (ships with the operating system) or an application program.

Computer System Organization

 Computer-system operation

 One or more CPUs, device controllers connect through common bus providing access to

shared memory

 Concurrent execution of CPUs and devices competing for memory cycles

Computer-System Operation

 I/O devices and the CPU can execute concurrently

 Each device controller is in charge of a particular device type

 Each device controller has a local buffer

 CPU moves data from/to main memory to/from local buffers

 I/O is from the device to local buffer of controller

 Device controller informs CPU that it has finished its operation by causing An interrupt

Interrupt Handling

 The operating system preserves the state of the CPU by storing registers and the program

counter

 Determines which type of interrupt has occurred:

 polling

 vectored interrupt system

 Separate segments of code determine what action should be taken for each type of

interrupt

Interrupt Timeline

Storage Hierarchy

 Storage systems organized in hierarchy

 Speed

 Cost

 Volatility

Caching – copying information into faster storage system; main memory can be viewed as a last

cache for secondary storage

Caching

 Important principle, performed at many levels in a computer (in hardware, operating

system, software)

 Information in use copied from slower to faster storage temporarily

 Faster storage (cache) checked first to determine if information is there

 If it is, information used directly from the cache (fast)

 If not, data copied to cache and used there

 Cache smaller than storage being cached

 Cache management important design problem

 Cache size and replacement policy

Computer-System Architecture

 Most systems use a single general-purpose processor (PDAs through mainframes)

 Most systems have special-purpose processors as well

 Multiprocessors systems growing in use and importance

 Also known as parallel systems, tightly-coupled systems

Advantages include

1. Increased throughput 2.Economy of scale

3.Increased reliability – graceful degradation or fault tolerance

Two types 1.Asymmetric Multiprocessing 2.Symmetric Multiprocessing

How a Modern Computer Works

Symmetric Multiprocessing Architecture

A Dual-Core Design

Clustered Systems

 Like multiprocessor

 systems, but multiple systems working together

 Usually sharing storage via a storage-area network (SAN)

 Provides a high-availability service which survives failures

Asymmetric clustering has one machine in hot-standby mode

Symmetric clustering has multiple nodes running applications, monitoring each other

 Some clusters are for high-performance computing (HPC)

Applications must be written to use parallelization

Operating System Structure

 Multiprogramming needed for efficiency

 Single user cannot keep CPU and I/O devices busy at all times

 Multiprogramming organizes jobs (code and data) so CPU always has one to Execute

 A subset of total jobs in system is kept in memory

 One job selected and run via job scheduling

 When it has to wait (for I/O for example), OS switches to another job

 Timesharing (multitasking) is logical extension in which CPU switches jobs so

frequently that users can interact with each job while it is running, creating interactive

computing

 Response time should be < 1 second

 Each user has at least one program executing in memory [process

 If several jobs ready to run at the same time [CPU scheduling

 If processes don’t fit in memory, swapping moves them in and out to run

Virtual memory allows execution of processes not completely in memory

Memory Layout for Multiprogramming System

Operating-System Operations

 Interrupt driven by hardware

 Software error or request creates exception or trap

 Division by zero, request for operating system service

 Other process problems include infinite loop, processes modifying each Other or the

operating system

 Dual-mode operation allows OS to protect itself and other system components

 User mode and kernel mode

 Mode bit provided by hardware

Provides ability to distinguish when system is running user code or kernel code

Some instructions designated as privileged, only executable in kernel mode

System call changes mode to kernel, return from call resets it to user

Transition from User to Kernel Mode

 Timer to prevent infinite loop / process hogging resources

 Set interrupt after specific period

 Operating system decrements counter

 When counter zero generate an interrupt

 Set up before scheduling process to regain control or terminate program that exceeds

allotted time

System Calls

 Programming interface to the services provided by the OS

 Typically written in a high-level language (C or C++)

 Mostly accessed by programs via a high-level Application Program Interface (API) rather

than direct system call usenThree most common APIs are Win32 API for Windows,

POSIX API for POSIX-based systems (including virtually all versions of UNIX, Linux,

and Mac OS X), and Java API for the Java virtual machine (JVM)

 Why use APIs rather than system calls?(Note that the system-call names used throughout

this text are generic)

Example of System Calls

API – System Call – OS Relationship

IMPORTANT QUESTIONS:

1. Define OS, Explain Various Functions of OS.

2. Explain Different Types of OS.

3. What Is System Call? Discuss Various Types of System Calls.

4. Explain OS Structure.

5. Write Short Notes on Virtual Machines.

UNIT-II

Process Concepts

 An operating system executes a variety of programs:

 Batch system – jobs

 Time-shared systems – user programs or tasks

 Textbook uses the terms job and process almost interchangeably

Process – a program in execution; process execution must progress in sequential fashion

A process includes:

 program counter

 stack

 data section

Process in Memory

Process State

As a process executes, it changes state

 new: The process is being created

 running: Instructions are being executed

 waiting: The process is waiting for some event to occur

 ready: The process is waiting to be assigned to a processor

 terminated: The process has finished execution

Diagram of Process State

Process Control Block (PCB)

Information associated with each process

 Process state

 Program counter

 CPU registers

 CPU scheduling information

 Memory-management information

 Accounting information

 I/O status information

CPU Switch from Process to Process

Process Scheduling Queues

Job queue – set of all processes in the system

 Ready queue – set of all processes residing in main memory, ready and waiting to

execute

 Device queues – set of processes waiting for an I/O device

 Processes migrate among the various queues

Ready Queue And Various I/O Device Queues

Representation of Process Scheduling

Schedulers

 Long-term scheduler (or job scheduler) – selects which processes should be brought

into the ready queue

 Short-term scheduler (or CPU scheduler) – selects which process should be executed

next and allocates CPU

Addition of Medium Term Scheduling

 Short-term scheduler is invoked very frequently (milliseconds) Þ (must be fast)

 Long-term scheduler is invoked very infrequently (seconds, minutes) Þ (may be slow)

 The long-term scheduler controls the degree of multiprogramming

 Processes can be described as either:

 I/O-bound process – spends more time doing I/O than computations, many short CPU

bursts

 CPU-bound process – spends more time doing computations; few very long CPU bursts

Process Creation

 Parent process create children processes, which, in turn create other processes, forming

a tree of processes

 Generally, process identified and managed via a process identifier (pid)

 Resource sharing

 Parent and children share all resources

 Children share subset of parent’s resources

 Parent and child share no resources

 Child has a program loaded into it

 UNIX examples

 fork system call creates new process

 exec system call used after a fork to replace the process’ memory space with a new

program

Process Creation

A tree of processes on a typical Solaris

Process Termination

 Process executes last statement and asks the operating system to delete it (exit)

 Output data from child to parent (via wait)

 Process’ resources are deallocated by operating system

 Parent may terminate execution of children processes (abort)

 Child has exceeded allocated resources

 Task assigned to child is no longer required

 If parent is exiting

Some operating system do not allow child to continue if its parent terminates

Multithreading Models

 Many-to-One

 One-to-One

 Many-to-Many

Many-to-One

Many user-level threads mapped to single kernel thread

Examples:

 Solaris Green Threads

 GNU Portable Threads

One-to-One

Each user-level thread maps to kernel thread

Examples Windows NT/XP/2000

Linux Solaris 9 and later

Many-to-Many Model

 Allows many user level threads to be mapped to many kernel threads

 Allows the operating system to create a sufficient number of kernel threads

 Solaris prior to version 9

 Windows NT/2000 with the Thread Fiber package

Two-level Model

Similar to M:M, except that it allows a user thread to be bound to kernel thread

Examples

 IRIX

 HP-UX

 Tru64 UNIX

 Solaris 8 and earlier

Thread Libraries

 Thread library provides programmer with API for creating and managing threads

 Two primary ways of implementing

 Library entirely in user space

 Kernel-level library supported by the OS

Pthreads

 May be provided either as user-level or kernel-level

 A POSIX standard (IEEE 1003.1c) API for thread creation and synchronization

 API specifies behavior of the thread library, implementation is up to development of the

library

Common in UNIX operating systems (Solaris, Linux, Mac OS X)

Scheduling Criteria

 CPU utilization – keep the CPU as busy as possible

 Throughput – # of processes that complete their execution per time unit

 Turnaround time – amount of time to execute a particular process

 Waiting time – amount of time a process has been waiting in the ready queue

 Response time – amount of time it takes from when a request was submitted until the

first response is produced, not output (for time-sharing environment)

 Max CPU utilization

 Max throughput

 Min turnaround time

 Min waiting time

 Min response time

First-Come, First-Served (FCFS) Scheduling

 Process Burst Time

P1 24

 P2 3

 P3 3

Suppose that the processes arrive in the order: P1 , P2 , P3

The Gantt Chart for the schedule is:

 P

1

P

2

P

3

2

4

2

7

3

0

0

Waiting time for P1 = 0; P2 = 24; P3 = 27

Average waiting time: (0 + 24 + 27)/3 = 17

Suppose that the processes arrive in the order

 P2 , P3 , P1

The Gantt chart for the schedule is:nnnn Waiting time for P1 = 6; P2 = 0; P3 = 3nAverage

waiting time: (6 + 0 + 3)/3 = 3

Much better than previous case

Convoy effect short process behind long process

Shortest-Job-First (SJF) Scheduling

 Associate with each process the length of its next CPU burst. Use these lengths to

schedule the process with the shortest time

 SJF is optimal – gives minimum average waiting time for a given set of processes

The difficulty is knowing

 Process Arrival Time Burst Time

 P1 0.0 6

 P2 2.0 8

 P3 4.0 7

 P4 5.0 3

SJF scheduling chart

average waiting time = (3 + 16 + 9 + 0) / 4 = 7the length of the next CPU request

 P1 P3 P2

6 3 30 0

 P

4

P

3
P

1
3 1

6

0 9

P

2
2

4

Process Synchronization

 To introduce the critical-section problem, whose solutions can be used to ensure the

consistency of shared data

 To present both software and hardware solutions of the critical-section problem

 To introduce the concept of an atomic transaction and describe mechanisms to ensure

atomicity

 Concurrent access to shared data may result in data inconsistency

 Maintaining data consistency requires mechanisms to ensure the orderly execution of

cooperating processes

 Suppose that we wanted to provide a solution to the consumer-producer problem that fills

all the buffers. We can do so by having an integer count that keeps track of the number of

full buffers. Initially, count is set to 0. It is incremented by the producer after it produces

a new buffer and is decremented by the consumer after it consumes a buffer

Solution to Critical-Section Problem

1. Mutual Exclusion - If process Pi is executing in its critical section, then no other processes can

be executing in their critical sections

2. Progress - If no process is executing in its critical section and there exist some processes

that wish to enter their critical section, then the selection of the processes that will enter the

critical section next cannot be postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of times that other processes are

allowed to enter their critical sections after a process has made a request to enter its critical

section and before that request is granted

Assume that each process executes at a nonzero speed

No assumption concerning relative speed of the N processes

Peterson’s Solution

 Two process solution

 Assume that the LOAD and STORE instructions are atomic; that is, cannot be

interrupted.

 The two processes share two variables:

 int turn;

 Boolean flag[2]

 The variable turn indicates whose turn it is to enter the critical section.

 The flag array is used to indicate if a process is ready to enter the critical section. flag[i] =

true implies that process Pi is ready!

Semaphore as General Synchronization Tool

 Counting semaphore – integer value can range over an unrestricted domain

 Binary semaphore – integer value can range only between 0

and 1; can be simpler to implement

 Also known as mutex locksn Can implement a counting semaphore S as a binary

semaphore

 Provides mutual exclusion Semaphore

Semaphore Implementation

 Must guarantee that no two processes can execute wait () and signal () on the same

semaphore at the same time

 Thus, implementation becomes the critical section problem where the wait and signal code

are placed in the critical section.

 Could now have busy waiting in critical section implementation

But implementation code is short

Little busy waiting if critical section rarely occupied

 Note that applications may spend lots of time in critical sections and therefore this is not

a good solution.

Semaphore Implementation with no Busy waiting

 With each semaphore there is an associated waiting queue. Each entry in a waiting queue

has two data items:

 value (of type integer)

 pointer to next record in the list

 Two operations:

 block – place the process invoking the operation on the appropriate waiting queue.

 wakeup – remove one of processes in the waiting queue and place it in the ready queue.

Classical Problems of Synchronization

 Bounded-Buffer Problem

 Readers and Writers Problem

 Dining-Philosophers Problem

Bounded-Buffer Problem

 N buffers, each can hold one item

 Semaphore mutex initialized to the value 1

 Semaphore full initialized to the value 0

 Semaphore empty initialized to the value N.

 The structure of the producer process

Readers-Writers Problem

A data set is shared among a number of concurrent processes

 Readers – only read the data set; they do not perform any updates

 Writers – can both read and written Problem – allow multiple readers to read at the same

time. Only one single writer can access the shared data at the same time

 Shared Data

 Data set

 Semaphore mutex initialized to 1

 Semaphore wrt initialized to 1

 Integer read count initialized to 0

Dining-Philosophers Problem

 Shared data

 Bowl of rice (data set)

 Semaphore chopstick [5] initialized to 1

Monitors

A high-level abstraction that provides a convenient and effective mechanism for process

synchronization

Only one process may be active within the monitor at a time

Schematic view of a Monitor

Condition Variables

condition x, y;

Two operations on a condition variable:

x.wait () – a process that invokes the operation is suspended.

x.signal () – resumes one of processes (if any) that invoked x.wait ()

Monitor with Condition Variables

IMPORTANT QUESTIONS:

 1) Define Process .Explain about Process States with Diagram.

2) What Is Scheduling. Explain About Types of Schedulers.

3) Explain About Various CPU Scheduling Algorithms.

4) Write Short Notes on A) Multilevel Scheduling

 B) Multiprocessor Scheduling

 C)Time Scheduling

 5) Explain About Process Synchronization and Critical Section Problem.

 6) Solutions for Critical Section Problem

 A) Petersons Solution B) Semaphore C) Monitors

 7) Discuss Classical Synchronization Problems

 A) Readers Writers Problem B) Producer Consumer Problem

 C) Dining Philosophers Problem

UNIT-III

Deadlocks

To develop a description of deadlocks, which prevent sets of concurrent processes from

completing their tasks? To present a number of different methods for preventing or avoiding

deadlocks in a computer system

The Deadlock Problem

A set of blocked processes each holding a resource and waiting to acquire a resource held by

another process in the set.

Example: System has 2 disk drives

P1 and P2 each hold one disk drive and each needs another one

Example: semaphores A and B, initialized to 1

 P0 P

wait (A); wait(B)

wait (B); wait(A)

System Model

Resource types R1, R2, . . ., Rm.CPU cycles, memory space, I/O devices

Each resource type Ri has Wi instances.Each process utilizes a resource as follows:

request

use

release

Deadlock Characterization

Deadlock can arise if four conditions hold simultaneously

Mutual exclusion: only one process at a time can use a resource

Hold and wait: a process holding at least one resource is waiting to acquire additional resources

held by other processes

No preemption: a resource can be released only voluntarily by the process holding it, after that

process has completed its task

Circular wait: there exists a set {P0, P1, …, P0} of waiting processes such that P0 is waiting

for a resource that is held by P1, P1 is waiting for a resource that is held by P2, …, Pn–1 is

waiting for a resource that is held by

Pn, and P0 is waiting for a resource that is held by P0.

Deadlock Prevention

Restrain the ways request can be made

Mutual Exclusion – not required for sharable resources; must hold for non sharable resources

Hold and Wait – must guarantee that whenever a process requests a resource, it does not hold

any other resources. Require process to request and be allocated all its resources before it begins

execution, or allow process to request resources only when the process has none. Low resource

utilization; starvation possible

Deadlock Avoidance

Requires that the system has some additional a priori information available. Simplest and most

useful model requires that each process declare the maximum number of resources of each type

that it may need. The deadlock-avoidance algorithm dynamically examines the resource-

allocation state to ensure that there can never be a circular-wait condition. Resource-allocation

state is defined by the number of available and allocated resources, and the maximum demands

of the processes

Resource-Allocation Graph Algorithm

Suppose that process Pi requests a resource Rj.The request can be granted only if converting the

request edge to an assignment edge does not result in the formation of a cycle in the resource

allocation graph

Banker’s Algorithm

Multiple instances Each process must a priori claim maximum use. When a process requests a

resource it may have to wait .When a process gets all its resources it must return them in a finite

amount of time

Data Structures for the Banker’s Algorithm

Let n = number of processes, and m = number of resources types. N Available: Vector of length

m. If available [j] = k, there are k instances of resource type Rj available Max: n x m matrix. If

Max [i,j] = k, then process Pi may request at most k instances of resource type Rj Allocation: n

x m matrix. If Allocation[i,j] = k then Pi is currently allocated k instances of RjnNeed: n x m

matrix. If Need[i,j] = k, then Pi may need k more instances of Rj to complete its task.Need [i,j] =

Max[i,j] – Allocation [i,j]

Safety Algorithm

1. Let Work and Finish be vectors of length m and n, respectively. Initialize:Work =

Available

Finish [i] = false for i = 0, 1, …, n- 1

2. Find and i such that both: (a) Finish [i] = false(b) Needi £ Work If no such i exists, go to

step 4

3. Work = Work + Allocationi Finish[i] = true go to step 2

4. If Finish [i] == true for all i, then the system is in a safe state

Detection Algorithm

1. Let Work and Finish be vectors of length m and n, respectively Initialize:(a) Work =

Available(b) For i = 1,2, …, n, if Allocationi ¹ 0, then Finish[i] = false;otherwise, Finish[i] =

true2. Find an index i such that both:(a) Finish[i] == false(b) Requesti £ WorkIf no such i

exists, go to step 4

3. Work = Work + Allocationi Finish[i] = true go to step 24. If Finish[i] == false, for some

i, 1 £ i £ n, then the system is in deadlock state. Moreover, if Finish[i] == false, then Pi is

deadlocked

Algorithm requires an order of O(m x n2) operations to detect whether the system is in

deadlocked state

Example of Detection Algorithm

Five processes P0 through P4; three resource types A (7 instances), B (2 instances), and C (6

instances) Can reclaim resources held by process P0, but insufficient resources to fulfill other

processes; requests Deadlock exists, consisting of processes P1, P2, P3, and P4etection-

Algorithm Usage

When, and how often, to invoke depends on: How often a deadlock is likely to occur?

How many processes will need to be rolled back?

one for each disjoint cycle If detection algorithm is invoked arbitrarily, there may be many

cycles in the resource graph and so we would not be able to tell which of the many deadlocked

processes “caused” the deadlock

Protection

Discuss the goals and principles of protection in a modern computer system Explain how

protection domains combined with an access matrix are used to specify the resources a process

may access Examine capability and language-based protection systems

Goals of Protection: Operating system consists of a collection of objects, hardware or software

Each object has a unique name and can be accessed through a well-defined set of operations

Protection problem - ensure that each object is accessed correctly and only by those processes

that are allowed to do so.

Principles of Protection

Guiding principle – principle of least privilege Programs, users and systems should be given just

enough privileges to perform their tasks

Domain Structure

Access-right = <object-name, rights-set>

where rights-set is a subset of all valid operations that can be performed on the object. Domain =

set of access-rights

System consists of 2 domains: User Supervisor UNIX Domain = user-id Domain switch

accomplished via file system

Each file has associated with it a domain bit (setuid bit)

When file is executed and setuid = on, then user-id is set to owner of the file being executed.

When execution completes user-id is reset

Domain Implementation (MULTICS)

Let Di and Dj be any two domain rings

If j < I Þ Di Í Dj

Access Matrix

View protection as a matrix (access matrix) Rows represent domains Columns represent objects

Access(i, j) is the set of operations that a process executing in Domaini can invoke on Objectj

Implementation of Access Matrix

Each column = Access-control list for one object

Defines who can perform what operation.

 Domain 1 = Read, Write

 Domain 2 = Read

 Domain 3 = Read

Each Row = Capability List (like a key) Fore each domain, what operations allowed on what

objects.

Object 1 – Read

Object 4 – Read, Write, Execute

Object 5 – Read, Write, Delete, Copy

Access Matrix with Copy Rights

Access Matrix with Owner Rights

Modified Access Matrix of Figure B

Revocation of Access Rights

Access List – Delete access rights from access list Simple and Immediate

Capability List – Scheme required to locate capability in the system before capability can be

revoked Reacquisition Back-pointers Indirection Keys

Capability-Based Systems

Hydra Fixed set of access rights known to and interpreted by the system Interpretation of user-

defined rights performed solely by user's program; system provides access protection for use of

these rights Cambridge CAP System Data capability - provides standard read, write, execute of

individual storage segments associated with object Software capability -interpretation left to the

subsystem, through its protected procedures.

Language-Based Protection

Specification of protection in a programming language allows the high-level description of

policies for the allocation and use of resources Language implementation can provide software

for protection enforcement when automatic hardware-supported checking is unavailable Interpret

protection specifications to generate calls on whatever protection system is provided by the

hardware and the operating system.

IMPORTANT QUESTIONS:

1) What Is A Dead Lock?

2) Explain Characteristics Of Deadlock.

3) Explain About A) Deadlock Prevention

 B) Deadlock Detection

 C) Dead Lock Avoidance

 D) Deadlock Recovery

 4) Explain Bankers Algorithm.

 5) Explain How Protection Is Implemented For Access Matrix.

UNIT-IV
Memory Management

 To provide a detailed description of various ways of organizing memory hardware

 To discuss various memory-management techniques, including paging and segmentation

 To provide a detailed description of the Intel Pentium, which supports both pure

segmentation and segmentation with paging

 Program must be brought (from disk) into memory and placed within a process for it to

be run

 Main memory and registers are only storage CPU can access directly

 Register access in one CPU clock (or less)

 Main memory can take many cycles

 Cache sits between main memory and CPU registers

 Protection of memory required to ensure correct operation

Base and Limit Registers

A pair of base and limit registers define the logical address space

Binding of Instructions and Data to Memory

 Address binding of instructions and data to memory addresses can happen at three

different stages

 Compile time: If memory location known a priori, absolute code can be generated;

must recompile code if starting location changes

 Load time: Must generate relocatable code if memory location is not known at compile

time

 Execution time: Binding delayed until run time if the process can be moved during its

execution from one memory segment to another. Need hardware support for address

maps (e.g., base and limit registers)

Multistep Processing of a User Program

Logical vs. Physical Address Space

 The concept of a logical address space that is bound to a separate physical address space

is central to proper memory management

 Logical address – generated by the CPU; also referred to as virtual address

 Physical address – address seen by the memory unit

 Logical and physical addresses are the same in compile-time and load-time address-

binding schemes; logical (virtual) and physical addresses differ in execution-time

address-binding scheme

Swapping

A process can be swapped temporarily out of memory to a backing store, and then brought back

into memory for continued execution. Backing store – fast disk large enough to accommodate

copies of all memory images for all users; must provide direct access to these memory images

Roll out, roll in – swapping variant used for priority-based scheduling algorithms; lower-priority

process is swapped out so higher-priority process can be loaded and executed Major part of swap

time is transfer time; total transfer time is directly proportional to the amount of memory

swapped Modified versions of swapping are found on many systems (i.e., UNIX, Linux, and

Windows)

System maintains a ready queue of ready-to-run processes which have memory images on disk

Schematic View of Swapping

Contiguous Allocation

 Main memory usually into two partitions:

 Resident operating system, usually held in low memory with interrupt vector

 User processes then held in high memory Relocation registers used to protect user

processes from each other, and from changing operating-system code and data

 Base register contains value of smallest physical address

 Limit register contains range of logical addresses – each logical address must be less than

the limit register

 MMU maps logical address dynamically

Dynamic Storage-Allocation Problem

 First-fit: Allocate the first hole that is big enough

 Best-fit: Allocate the smallest hole that is big enough; must search entire list, unless

ordered by size Produces the smallest leftover hole

 Worst-fit: Allocate the largest hole; must also search entire list

 Produces the largest leftover hole

 First-fit and best-fit better than worst-fit in terms of speed and storage utilization

Fragmentation

 External Fragmentation – total memory space exists to satisfy a request, but it is not

contiguous

 Internal Fragmentation – allocated memory may be slightly larger than requested

memory; this size difference is memory internal to a partition, but not being used

 Reduce external fragmentation by compaction

 Shuffle memory contents to place all free memory together in one large block

 Compaction is possible only if relocation is dynamic, and is done at execution time.

 I/O problem

Latch job in memory while it is involved in I/O

Do I/O only into OS buffers

Paging

 Logical address space of a process can be noncontiguous; process is allocated physical

memory whenever the latter is available

 Divide physical memory into fixed-sized blocks called frames (size is power of 2,

between 512 bytes and 8,192 bytes)

 Divide logical memory into blocks of same size called pagesnKeep track of all free

frames

 To run a program of size n pages, need to find n free frames and load program

 Set up a page table to translate logical to physical addresses

 Internal fragmentation

Paging Hardware

Paging Model of Logical and Physical Memory

Paging Example

 32-byte memory and 4-byte pages

Free Frames

Implementation of Page Table

 Page table is kept in main memory

 Page-table base register (PTBR) points to the page table

 Page-table length register (PRLR) indicates size of the page table

 In this scheme every data/instruction access requires two memory accesses. One for the

page table and one for the data/instruction.

 The two memory access problem can be solved by the use of a special fast-lookup

hardware cache called associative memory or translation look-aside buffers (TLBs)

 Some TLBs store address-space identifiers (ASIDs) in each TLB entry – uniquely

identifies each process to provide address-space protection for that process

Associative Memory

 Associative memory – parallel search

 Address translation (p, d)

 If p is in associative register, get frame # out

 Otherwise get frame # from page table in memory

Paging Hardware With TLB

Page # Frame #

Effective Access Time

 Associative Lookup = e time unit

 Assume memory cycle time is 1 microsecond

 Hit ratio – percentage of times that a page number is found in the associative registers;

ratio related to number of associative registers

 Hit ratio = an Effective Access Time (EAT)

 EAT = (1 + e) a + (2 + e)(1 – a)

 = 2 + e – a

Memory Protection

 Memory protection implemented by associating protection bit with each frame

 Valid-invalid bit attached to each entry in the page table:

 “valid” indicates that the associated page is in the process’ logical address space, and is

thus a legal page

 “invalid” indicates that the page is not in the process’ logical address space

 Valid (v) or Invalid (i) Bit In A Page Table

Shared Pages Example

Structure of the Page Table

 Hierarchical Paging

 Hashed Page Tables

 Inverted Page Tables

Hierarchical Page Tables

 Break up the logical address space into multiple page tables

 A simple technique is a two-level page table

Two-Level Page-Table Scheme

Two-Level Paging Example

 A logical address (on 32-bit machine with 1K page size) is divided into:

 a page number consisting of 22 bits

 a page offset consisting of 10 bits

 Since the page table is paged, the page number is further divided into:

 a 12-bit page number

 a 10-bit page offset

 Thus, a logical address is as follows:

where pi is an index into the outer page table, and p2 is the displacement within the page

of the outer page table

Address-Translation Scheme

page number page offset

pi p2 d

12 10 10

Three-level Paging Scheme

Hashed Page Tables

 Common in address spaces > 32 bits

 The virtual page number is hashed into a page table

 This page table contains a chain of elements hashing to the same location

 Virtual page numbers are compared in this chain searching for a match

 If a match is found, the corresponding physical frame is extracted

Hashed Page Table Inverted Page Table

 One entry for each real page of memory

 Entry consists of the virtual address of the page stored in that real memory location, with

information about the process that owns that page

 Decreases memory needed to store each page table, but increases time needed to search

the table when a page reference occurs

 Use hash table to limit the search to one — or at most a few — page-table entries

Inverted Page Table Architecture

Segmentation

Memory-management scheme that supports user view of memory

 A program is a collection of segments

 A segment is a logical unit such as:

 main program

 procedure function

 method

 object

 local variables, global variables

 common block

 stack

 symbol table

 arrays

Segmentation Architecture

 Logical address consists of a two tuple:

<segment-number, offset>,

 Segment table – maps two-dimensional physical addresses; each table entry has:

 base – contains the starting physical address where the segments reside in memory

 limit – specifies the length of the segment

 Segment-table base register (STBR) points to the segment table’s location in memory

 Segment-table length register (STLR) indicates number of segments used by a

program; segment number s is legal if s < STLR

 Protection

 With each entry in segment table associate:

 validation bit = 0 Þ illegal segment

 read/write/execute privileges

 Protection bits associated with segments; code sharing occurs at segment level

 Since segments vary in length, memory allocation is a dynamic storage-allocation

problem

 A segmentation example is shown in the following diagram

Segmentation Hardware

Example of Segmentation

Example: The Intel Pentium

 Supports both segmentation and segmentation with paging

 CPU generates logical address

 Given to segmentation unit Which produces linear addresses

 Linear address given to paging unit Which generates physical address in main memory

Paging units form equivalent of MMU

Logical to Physical Address Translation in Pentium

Intel Pentium Segmentation

Linear Address in Linux

Three-level Paging in Linux

IMPORTANT QUESTIONS:

1) Define File ,Explain File Access Methods.

2) Write Short Notes File System Mounting ,File Sharing, Protection file.

3) Explain About File Allocation Methods.

4) Discuss About Free Space Management.

5) Explain About Directory Structure And Directory Implementation.

6) Explain About Disk Scheduling Algorithms.

7) Explain About Swap Space Management.

UNIT-V

File system Interface

To explain the function of file systems To describe the interfaces to file systems To discuss file-

system design tradeoffs, including access methods, file sharing, file locking, and directory

structures To explore file-system protection.

File Concept

Contiguous logical address space

Types:

Data, numeric, character, binary Program

File Structure

None - sequence of words, bytes Simple record structure Lines Fixed length Variable length

Complex Structures Formatted document Relocatable load file Can simulate last two with first

method by inserting appropriate control characters Who decides: Operating system, Program.

Access Methods

Sequential Access read next, write next ,reset , no read after last write, (rewrite)

Direct Access read n, write n, position to n, read next,write next ,rewrite n.

n = relative block number

Sequential-access File

Example of Index and Relative Files

Directory Structure

A collection of nodes containing information about all files Both the directory structure and the

files reside on disk Backups of these two structures are kept on tapes

Disk Structure

Disk can be subdivided into partitions Disks or partitions can be RAID protected against failure.

Disk or partition can be used raw – without a file system, or formatted with a file system

Partitions also known as minidisks, slices Entity containing file system known as a volume Each

volume containing file system also tracks that file system’s info in device directory or volume

table of contents As well as general-purpose file systems there are many special-purpose file

systems, frequently all within the same operating system or computer.

File System Mounting

A file system must be mounted before it can be accessed A unmounted file system (i.e. Fig. 11-

11(b)) is mounted at a mount point.

(a) Existing. (b) Unmounted Partition

Mount Point

File Sharing

Sharing of files on multi-user systems is desirablenSharing may be done through a protection

scheme On distributed systems, files may be shared across a networknNetwork File System

(NFS) is a common distributed file-sharing method

File Sharing – Multiple Users

User IDs identify users, allowing permissions and protections to be per-user Group IDs allow

users to be in groups, permitting group access rights.

File Sharing – Remote File Systems

Uses networking to allow file system access between systems Manually via programs like FTP

Automatically, seamlessly using distributed file systems Semi automatically via the world wide

web

Protection

File owner/creator should be able to control

lRead lWrite lExecute lAppend lDelete lList

Mass-storage structure

Overview of Mass Storage Structure

Magnetic disks provide bulk of secondary storage of modern computers Drives rotate at 60 to

200 times per second Transfer rate is rate at which data flow between drive and computer

Positioning time (random-access time) is time to move disk arm to desired cylinder (seek time)

and time for desired sector to rotate under the disk head (rotational latency) Head crash results

from disk head making contact with the disk surface

That’s bad Disks can be removable Drive attached to computer via I/O bus Busses vary,

including EIDE, ATA, SATA, USB, Fibre Channel, SCSI Host controller in computer uses bus

to talk to disk controller built into drive or storage array

Moving-head Disk Mechanism

Magnetic tape Was early secondary-storage medium Relatively permanent and holds large

quantities of data Access time slow Random access ~1000 times slower than disk Mainly used

for backup, storage of infrequently-used data, transfer medium between systems Kept in spool

and wound or rewound past read-write head Once data under head, transfer rates comparable to

disk 20-200GB typical storage Common technologies are 4mm, 8mm, 19mm, LTO-2 and SDLT.

Disk Structure

Disk drives are addressed as large 1-dimensional arrays of logical blocks, where the logical

block is the smallest unit of transfer The 1-dimensional array of logical blocks is mapped into the

sectors of the disk sequentially Sector 0 is the first sector of the first track on the outermost

cylinder Mapping proceeds in order through that track, then the rest of the tracks in that cylinder,

and then through the rest of the cylinders from outermost to innermost.

Disk Attachment

Host-attached storage accessed through I/O ports talking to I/O busses SCSI itself is a bus, up to

16 devices on one cable, SCSI initiator requests operation and SCSI targets perform tasks Each

target can have up to 8 logical units (disks attached to device controller FC is high-speed serial

architecture Can be switched fabric with 24-bit address space – the basis of storage area

networks (SANs) in which many hosts attach to many storage units Can be arbitrated loop (FC-

AL) of 126 devices.

Disk Scheduling

The operating system is responsible for using hardware efficiently — for the disk drives, this

means having a fast access time and disk bandwidth Access time has two major components

Seek time is the time for the disk are to move the heads to the cylinder containing the desired

sector Rotational latency is the additional time waiting for the disk to rotate the desired sector to

the disk head Minimize seek time Seek time » seek distance Disk bandwidth is the total number

of bytes transferred, divided by the total time between the first request for service and the

completion of the last transfer Several algorithms exist to schedule the servicing of disk I/O

requests . We illustrate them with a request queue (0-199)

98, 183, 37, 122, 14, 124, 65, 67 Head pointer 53

Swap-Space Management

Swap-space — Virtual memory uses disk space as an extension of main memory Swap-space can

be carved out of the normal file system, or, more commonly, it can be in a separate disk partition

Swap-space management l4.3BSD allocates swap space when process starts; holds text segment

(the program) and data segment Kernel uses swap maps to track swap-space use Solaris 2

allocates swap space only when a page is forced out of physical memory, not when the virtual

memory page is first created.

IMPORTANT QUESTIONS:

1) Differences between Logical& Physical Address Space.

2) Explain About Contiguous Memory Allocation And Memory Allocation Algorithms.

3) Explain About Paging And Page Table Structures.

4) Explain About Segmentation.

5) Define Fragmentation And Discuss Differences Between Internal And External

Fragmentation.

6) Discuss about Virtual Memory.

7) Explain about Demand Paging.

8) Explain about Various Page Replacement Algorithms.

9) Define Thrashing. Explain different Thrashing Control Methods.

10) Discuss Different Frame Allocation Methods.

	Computer System Structure
	Four Components of a Computer System
	Computer-System Architecture
	Clustered Systems
	Operating-System Operations

	Process State
	Many-to-One

	Process Synchronization
	IMPORTANT QUESTIONS:
	UNIT-III
	IMPORTANT QUESTIONS: (1)
	UNIT-IV
	Memory Management
	Multistep Processing of a User Program
	Shared Pages Example
	Inverted Page Table
	Linear Address in Linux

